

Energy Information Systems

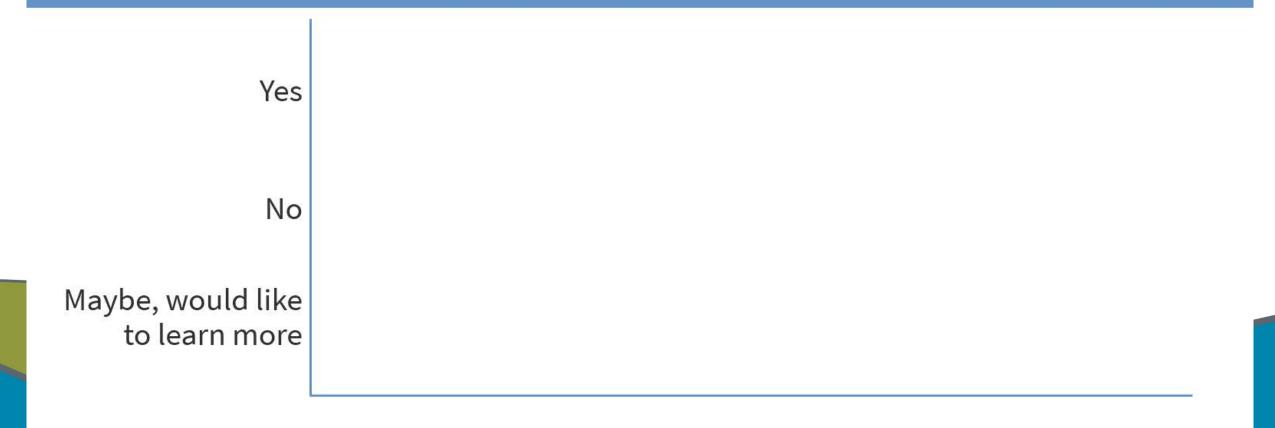
CASDEM - 1/11/18 Host: Adams 12 Five Star Schools

Agenda for this morning

Time	Торіс
10:00-10:15	Introductions
10:15-10:45	Adams 12 Initiatives
10:45-11:00	Review of EIS Survey Results
11:00-11:00	Break before Regular CASDEM Meeting Resumes

Colorado Association of School District Energy Managers

- <u>www.CASDEM.org</u>
- Free, open to all school district staff
- Next Meeting: March 1, St. Vrain Valley School District
 - ESS/Intro Topic: Solar PPAs


COLORADO Energy Office

Energy Savings for Schools (ESS)

- Free on-site energy and water audits, implementation support and energy coaching for Colorado schools (rural and low income focus)
- Recognition and opportunities to engage students, real-time data on a webbased dashboard through e-gauge energy monitors
- bit.ly/CEOenergysavings
- Call Susan Blythe at 970.207.0058 for more information

This is poll everywhere, a software to encourage remote participation, real-time polling, and various additional functionalities such as allowing respondents to enter questions to the audience, making word clouds, open ended responses, etc. At first glance do you think this is something CASDEM and ESS participants would use?

Adams 12 Five Star Schools Sustainability Initiatives

Shannon Oliver

Assistant Director of Energy & Sustainability CASDEM Meeting – January 11, 2018

Overview

- The District
- Water Conservation
- Waste Reduction
- Energy Information Systems

COLORADO Energy Office

The District – Who We Are

- 51 schools and 9 support facilities
- 35,000 in-district and 4,000 charter/preschool
- 4,700 employees
- 43% Free and Reduced, range from 4-92%
- 20% Spanish as native language

FY-2018 Utilities Budget:

- Electric \$4,603,000
- Water \$1,822,000
- Nat. Gas \$690,000
- Waste \$180,000
- Total* \$7,617,000

*with salaries and other op-ex

Water Conservation

- 23.8% increase in cost over baseline
- 6.9% increase in usage over baseline
- 23.4% increase in rate (\$/kGal)
- FY17 \$2,000,872 adopted budget
- How to save on water budget?
- 10% savings = >\$200,000*

Innov8 VN Register

Dashboards

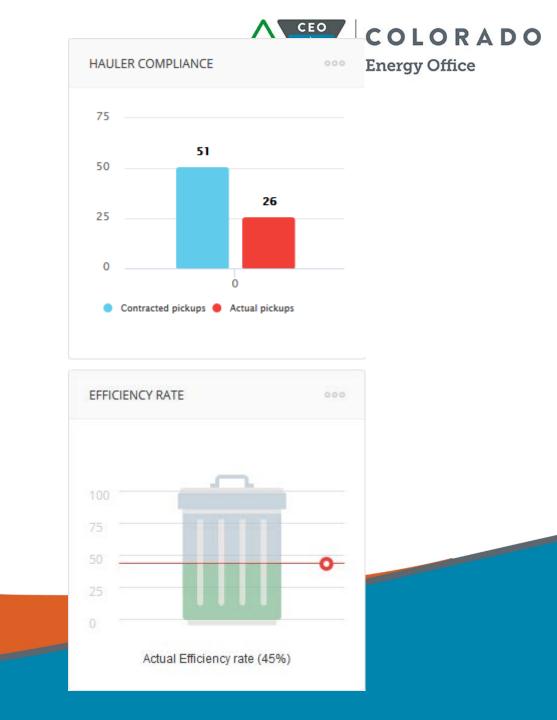
Water Resource Specialist Results (Jan 2017 – Oct 2017)

- Position created to focus on irrigation management
- Began January 1, 2017
- Usage Savings: 41,613 kGal
- Gross Cost Savings: \$121,304
- Avoided Cost: \$282,979^

^(if we paid during baseline what we pay now)

	Historic Values			Percent Change ¹	
Time Period (Jan-Oct)	Usage (kGal)	Cost (\$)	Rate (\$/kGal)	Usage	Cost
Baseline					
(3-yr Avg.)	232,021	\$1,200,858	\$5.09		
2014	212,630	\$977,518	\$5.10	-8.4%	-18.6%
2015	240,584	\$1,282,344	\$6.43	3.7%	6.8%
2016	242,848	\$1,342,713	\$6.28	4.7%	11.8%
2017	190,408	\$1,079,554	\$6.30	-17.9%	-10.1%
¹ Compared to 3-yr Baseline Avg. for the same period					

COLORADO Energy Office


Waste Reduction - Composting Pilot

- Four schools involved
 - 1 High School
 - 1 Middle School
 - 1 K-8
 - 1 Elementary
- Commercial haul-away model (Alpine)

- Cafeteria focused
- Student/staff led
- Pre- and Post- surveys will measure KAP
- Waste tracking to assist in diversion estimates

Waste Tracking

- Piloting devices as part of compost pilot
- Volumetric waste tracking of recycle dumpsters
- Working on grant for district-wide integration of tracking
- Sustain Data

COLORADO Energy Office

EIS Project

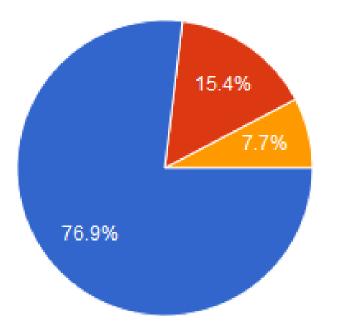
- Following Xcel Energy's EIS program
- Joined the Better Buildings Initiative
 Smart Energy Analytics Campaign
- 3 buildings
 - 2 High schools
 - Main admin building

- Real-time monitoring of:
 - Whole building electric use
 - Whole building gas use
 - Sub-metering of chillers and large RTUs
 - Sub-metering of data center (ESC)
 - Outside Air Temp at each building
- Software portion TBD
 - Analytics through Niagara?
 - Simplistic front-facing dashboard?

Thanks for listening and attending CASDEM today!

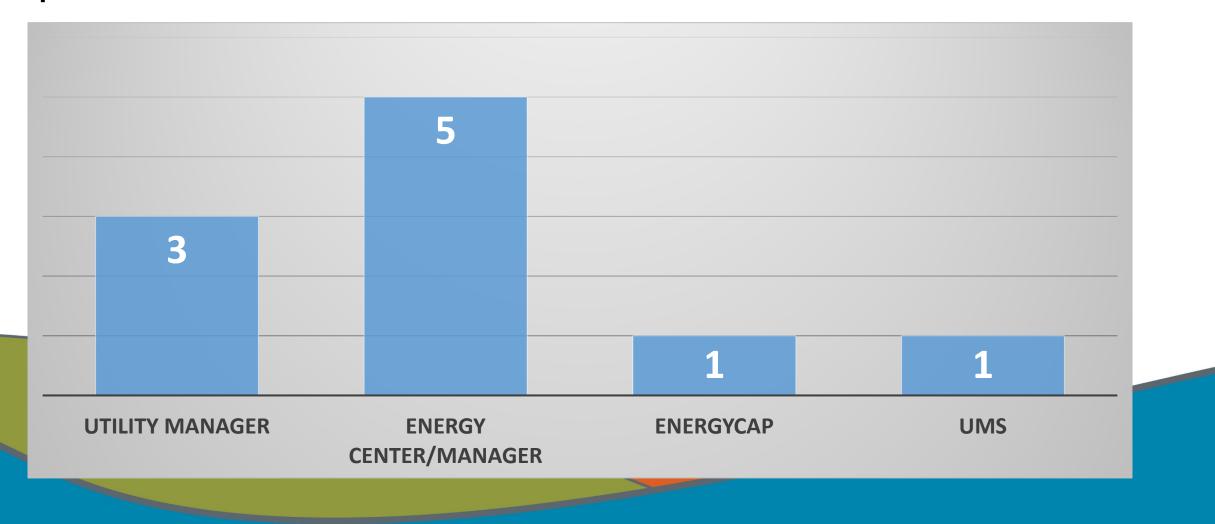
Any questions?

COLORADO Energy Office

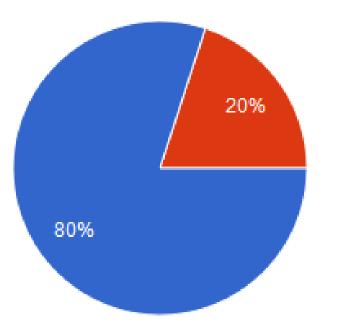

Utility Tracking Survey Results

- 13 responses
- From Gilpin County 1 to El Paso 49
- From Regis Jesuit HS to DPS

Does your district currently use a utility bill tracking program?


13 responses

If yes, what is the program name or provider? (10 responses)



If yes, how do you pay for the program?

10 responses

Recurring (monthly, annual, etc.) fee Upfront purchase with no recurring fee Don't Know

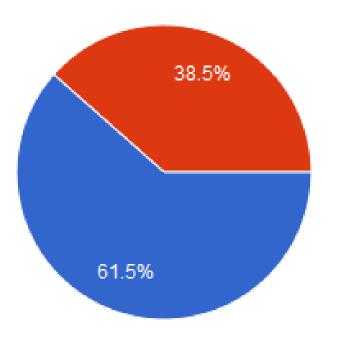
Does your district currently utilize a Building Automation System to manage heating and cooling?

13 responses

If yes, what is the program name or provider? (13 responses)

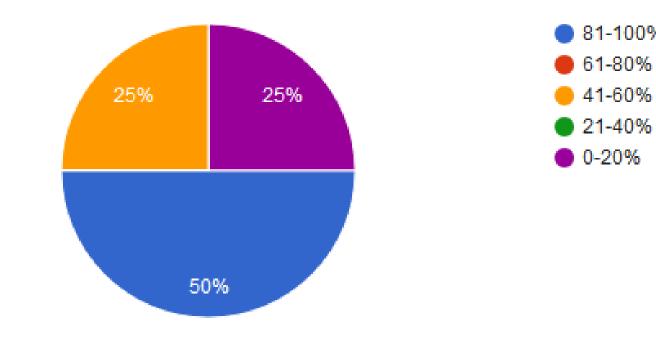
- School Dude
- iNet
- Niagara/N4 (6)
- Automated Logic (2)
- Metasys (3)
- Alerton (2)

- Set Point
- Andover
- Long
- KMC
- JCI-FX
- Delta


*4 Districts with more than 1 BAS system

Does your district currently utilize real-time or 'smart' meters for tracking electricity use?

13 responses



81-100%

61-80%

How much of your district is equipped with real-time meters?

8 responses

COLORADO Energy Office

Have you used your smart meters for bill validation? (8 responses)

- Yes, a few times (4)
- No, never (4)

COLORADO Energy Office

What types or brands of meter(s) do you use? (8 responses)

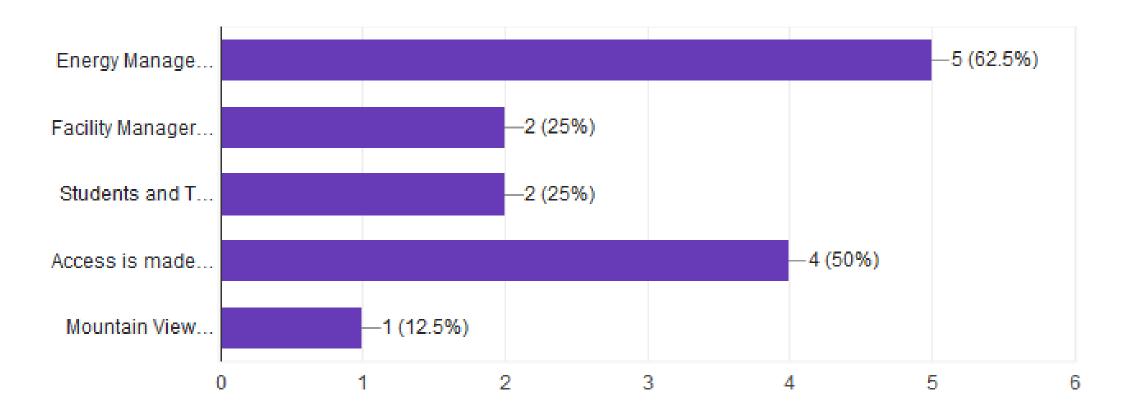
- eGauge (5)
- Xcel pulse data (1)
- Unknown (3)
- Enernoc (1)
- Through ALC programs (1)

Programs used to monitor smart meters? (8 responses) • eGauge of

- 7 respondents use something
- 1 does not use anything

• eGauge dashboard (2)

COLORADO


Energy Office

- Power TakeOff
- SkySpark
- EnergyCenter
- Cube Resources (2)
- ALC
- Enernoc
- EnergyCap
- Vykon Energy Suite
- Building OS by Lucid

Who has access to these smart meters and their data?

8 responses

What is the greatest benefit provided by smart meters to your school district?

8 responses

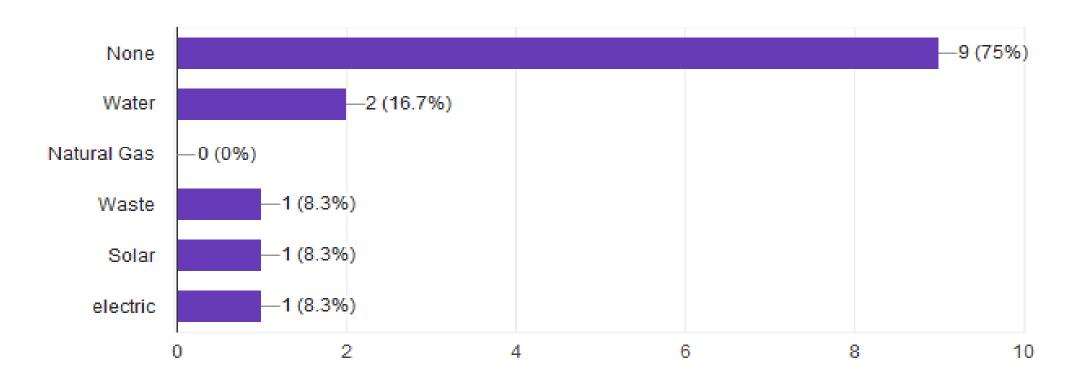
Learning skills and tools to analyze conservation measures.

Not sure yet, they're pretty new

Finding BAS programming errors through heat maps

Using data as a foundation for behavioral engagement programs

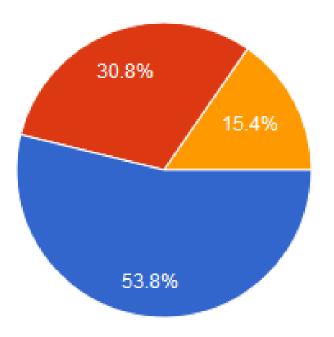
Can track power usage for comparison for breaks, weather etc.


Catching excessive usage during unoccupied hours

Demand management and base load reduction

Information is not sufficiently utilized because user interface is not intuitive.

Does your district currently utilize real-time or 'smart' meters for tracking any of the following:


12 responses

Do you have plans for purchasing energy information software or additional smart-meters?

13 responses

If yes, please describe your plans:

7 responses

Following the Xcel EIS program, currently finalizing the hardware piece and will then purchase an EIS of some kind.

future bond

Jeffco will have all sites covered by eGauges for Fall 2019 monitoring all electricity used and solar produced. Looking at pilot sites for smart water meters and natural gas.

We plan to purchase/install smart meters to track our electricity use

Would like to convert 25 schools to smart meters this year

BuildingIQ analytics to identify all high school out of normal conditions, and support automated demand response.

Researching options currently. The capability and price point of "Utility Manager" seem attractive.

Any additional questions or comments regarding utility bill tracking, smart meters or EIS?

7 responses

No (2)

There's a lot of great stuff out there, but the hardest thing is finding the time to choose the right program and monitor it closely enough to take advantage of all the benefits; esp. as I am a one person department. But luckily our electricians and HVAC staff and teachers and students use the eGauge quite often.

Dara, Hall and Shannon rock!

Interested in what might be used to track utility bill information as well as smart meters.

Curious to know what others are using...

Not familiar with EIS


Energy Information Systems

Brad Queen Cube Resources <u>brad@cuberesources.com</u> Office: 303-247-1187 Cell: 303-520-3090 http://www.cuberesources.com/

LBNL EIS (EMIS) Definitions

System that uses EMIS are a broad family of tools to monitor, analyze, and control building energy use and system performance

* The boundaries can be fuzzy; some tools cross categories, e.g., energy information systems with FDD and benchmarking capabilities

4

LBN

Benchmarking & Utility Bill Analysis

- EPA Portfolio Manager
- EnergyCAP
- Ecova
- Facility Dude
- Metrix 4
- Energy Print
- Energy Manager Advanced EIS applications

NL EIS (EMIS) Examples							
EIS & Advanced EIS s	BAS	FDD	ASO				
 Obvius Building Manager Online Lucid BuildingOS Noveda Energy Flow Monitor NorthWrite Energy Worksite IBIS EnerNOC EfficiencySmart Schneider Energy Operation EFT Energy Manager eSight Enterprise 	 Siemens Apogee Johnson Control Metasys Honeywell Enterprise Buildings Integrator™ Emerson DeltaV Schneider Electric TAC Vista Novar Opus EMS Tridium Niagara 	 Cimetrics InfoMetrics EZENICS Sky Foundry Sky Spark ClimaCheck Schneider Building Analytics FDSI Insight 	BuildingIQ				
 EIS applications Data visualization (i.e. energy dashboard) Whole building & submeter level energy tracking & benchmarking Peak load analysis 	 Automated Logic WebControl 	ļ					

excessive energy use) Project savings verification

Automated interval data analysis with baseline modeling

Energy anomaly detection (i.e. scheduling, changes in load profile,

Cumulative sum

LBNL Summary of EMIS Tools

	EMIS tools	Data scope	Key uses	Costs	Energy Savings
Whole building	Benchmarking & Utility Bill Analysis	Monthly utility bills	Peer-to peer comparisonUtility bill analysis	Free -\$	2.4% (median) (whole building, enabled savings)
Whole building & system	EIS & Advanced EIS	Hourly or 15- min meter data	 Energy dashboard/kiosk Benchmarking Energy anomalies alert Demand response Auto M&V 	\$\$-\$\$\$	8% (median), 0- 33% (range) (whole building, enabled savings)
System	BAS	15-min or less	 Building system control Manually troubleshooting by investigating trends 	\$\$\$\$	10-15% (whole building)
	FDD	interval sub- system data	 Auto system or component fault notification Fault causes identification 	\$\$\$	2-11% (whole building, potential savings)
	ASO		Optimal HVAC settings prediction	\$\$\$	-

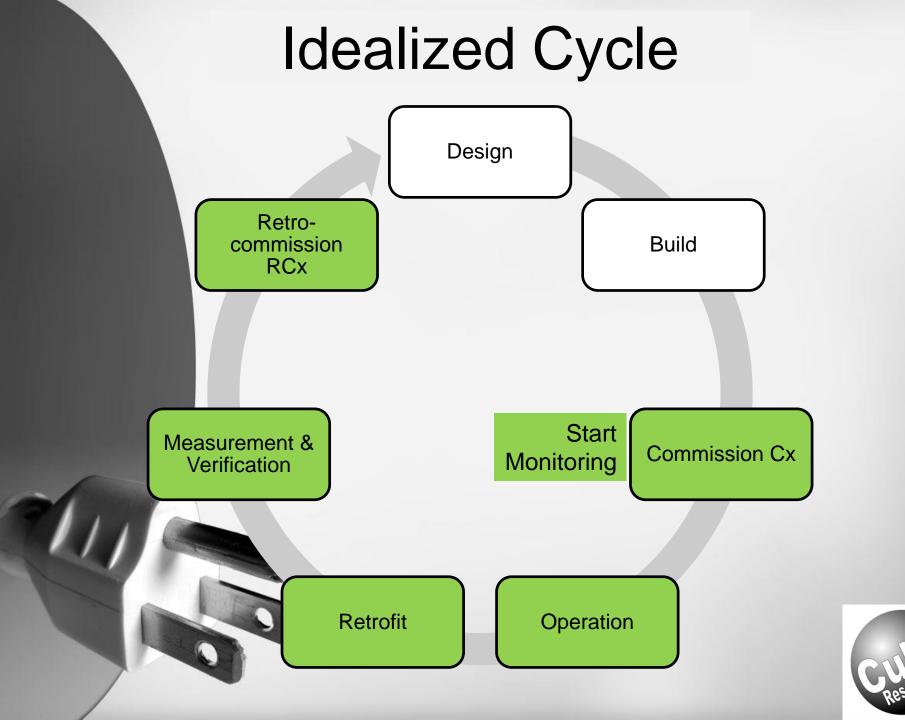
20

Strategic View

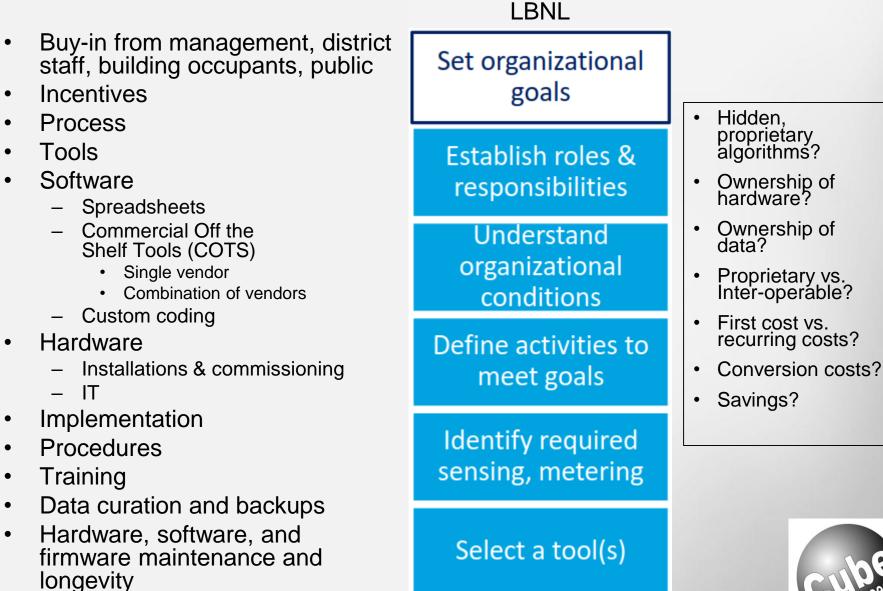
- Optimize for benefit of occupants and taxpayers
 - Comfort / productivity
 - Security
 - Public Support / Community engagement
- Constraints (Money, Schedule, Risk, Performance)
 - Capital costs
 - Utility costs
 - Internal labor
 - Procured labor
 - Procured hardware and software
- Performance metrics
 - Energy Use Intensity
 - Emissions
 - Utilization (CU example)

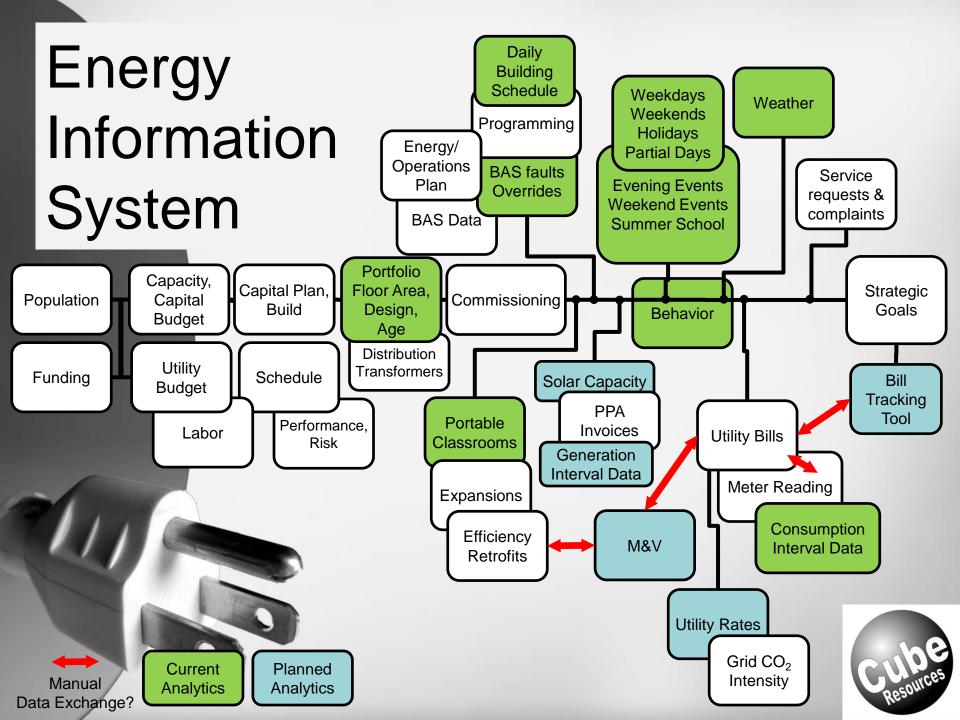
Productivity vs. Efficiency

- Full occupancy
- After hours use
- Weekend use
- Year-round use



- Efficient systems
- Set points
- Scheduling
- Automation





Software ≠ Process ≠ System

Utility Meter Reading and Billing

- Meter calibration errors
- Meter transcription errors and estimates
- Data entry errors in bill tracking software
- Payment errors
- Billing audits
- Corrections and refunds
- Treatment of error and correction in data

Data Concept

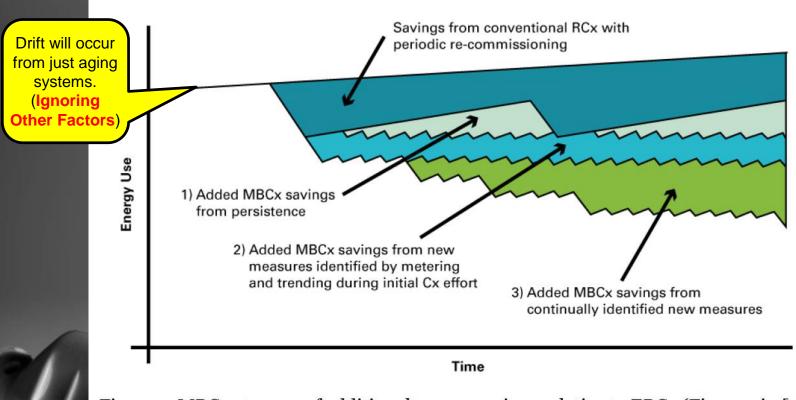
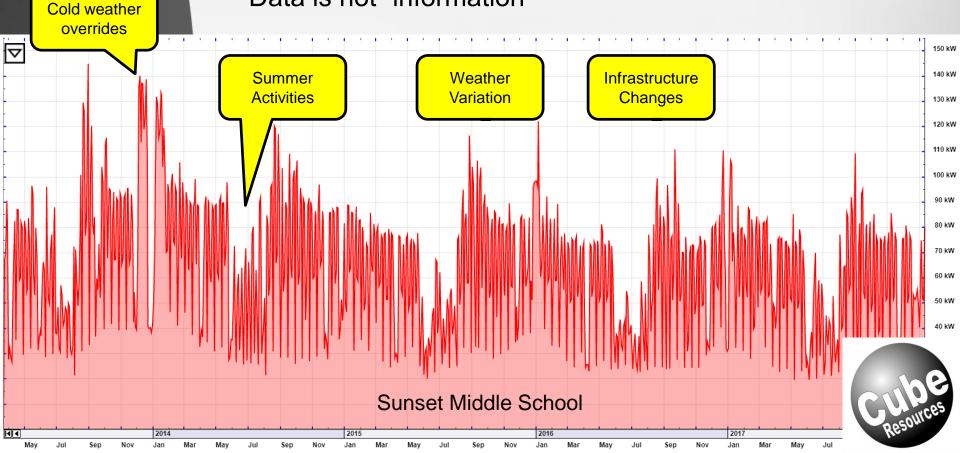
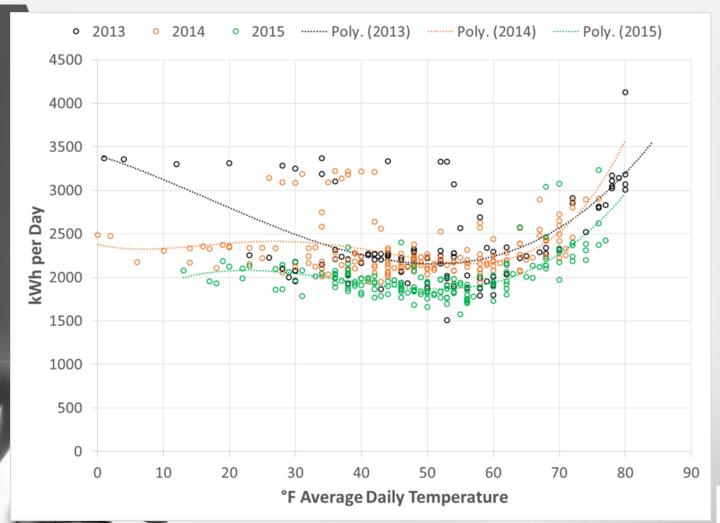


Figure 5. MBCx streams of additional energy savings relative to EBCx (Figure 1 in [1])

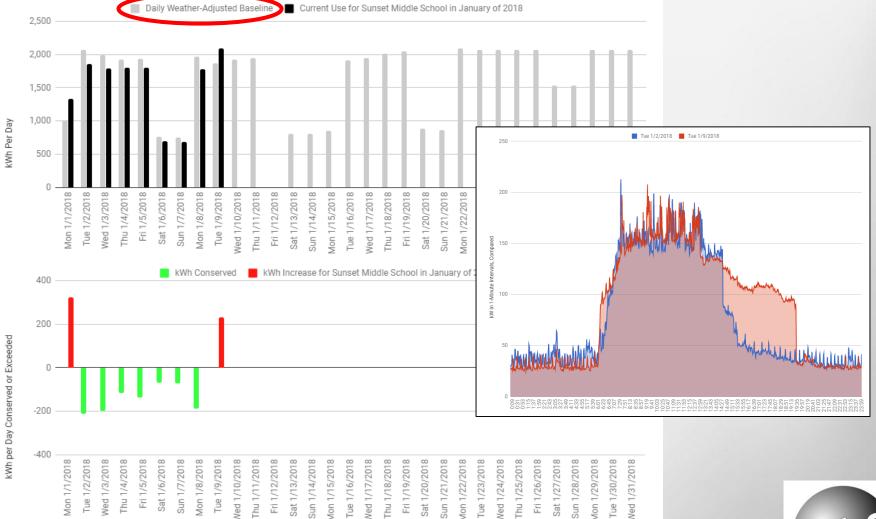


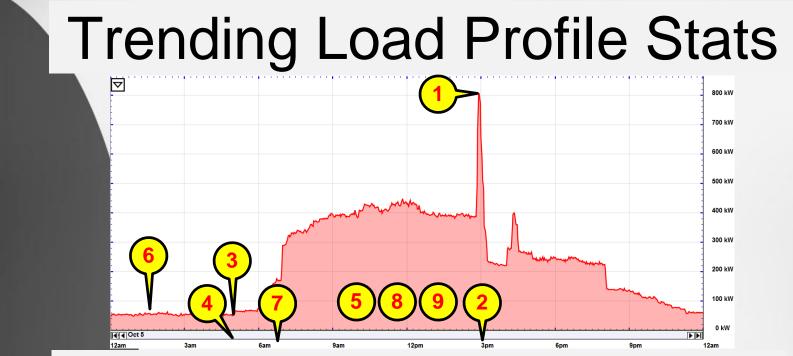
Lawrence Berkeley National Laboratory Building Commissioning: Cost-benefit Assessments, Mills 2009 Improving Energy Efficiency through Commissioning, October 2013 https://cbs.lbl.gov/sites/all/files/lbnl-6495e.pdf


Data Reality

- Billing data is low-information
- Interval data is noisy
- Even "free" data has a cost
- Have a plan before you get too much data
- Data is not "information"

Weather Normalization

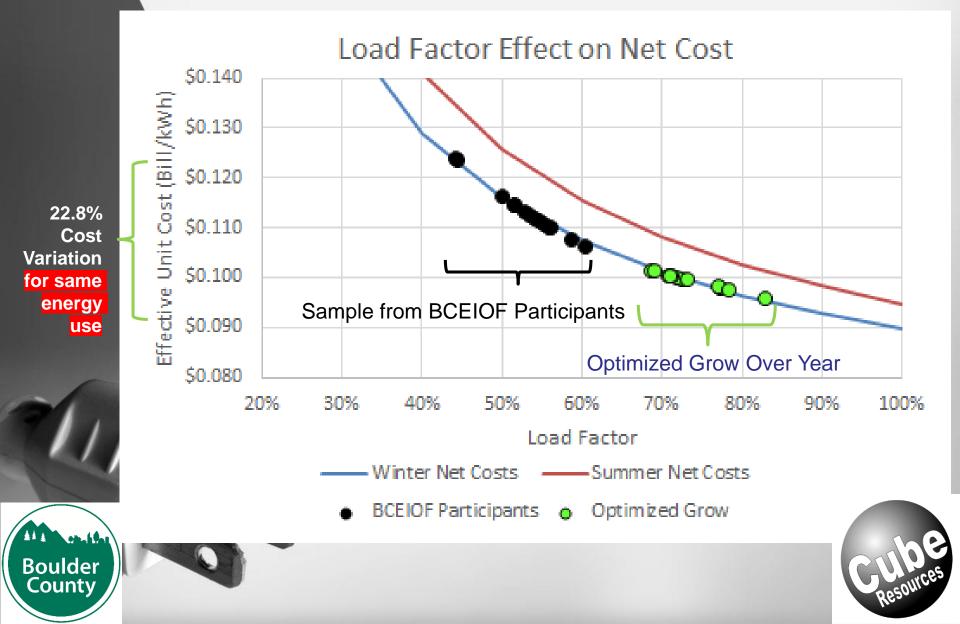

Unambiguous 2014 to 2015 54,000 kWh/year performance shift at Sunset Middle School



Occupant Feedback Simplified but not Simplistic

Current Use for Sunset Middle School in January of 2018

http://www.cuberesources.com/db/sv-sunse-m/


- 1. Peak load
- 2. Peak time
- 3. Minimum load 8. Load Factor
- Min time
- 5. kWh for day

- 6. Overnight load
- 7. Start-up time
- 9. Significance

The benefits of high quality electrical usage interval data Magnelab http://www.magnelab.com/the-benefits-of-high-guality-electrical-usage-interval-data/

Load Factor Effect on Costs

Trended Comparisons

Both high and low load factors can indicate problems

AK					Chiller									Chiller			
783		Blue Hero	Bradford I	Carmody	Chatfield I	Creighton	Little Elen	Ralston V	West Jeff	West Jeff	West Woo	Westridge	Wheat Ric	Bear Cree	Bell Middl	Campbell	Deer Cree
1261		<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>
Ŧ	Ŧ	1ryFC =	1TX2F =	1rrq77 -	16U6N \Xi	1a_Hk ≂	1ILE8 =	10C2i}∓	1h_rw ∓	1ljOSI ∓	1Vo-oj ≂	1DvT§∓	14SE8 -	19a1x =	1_tX-y 	1_Er1I ⊽	1WJUI ,
2017-02-02 Thu	Weekday	51%	48%	52%	55%	50%	46%	54%	58%	46%	61%	51%	54%	55%	58%	51%	48%
2017-02-03 Fri	Weekday	50%	48%	51%	57%	48%	50%	53%	53%	43%		50%	55%	56%	58%	53%	49%
2017-02-04 Sat	Weekend	58%	47%	60%	57%	56%	68%	54%	69%	77%	33%	85%	56%	65%	84%	44%	59%
2017-02-05 Sun	Weekend	55%	49%	61%	55%	58%	66%	52%	58%	77%	- 59 %	86%	75%	73%	85%	62%	67%
2017-02-06 Mon	Weekday	48%							200 kW	47%	55%	50%	54%	54%	55%	49%	47%
2017-02-07 Tue	Weekday	47%	-							47%	49%	49%	50%	53%	55%	44%	47%
2017-02-08 Wed	Weekday	45%					M. 1			46%	48%	51%	50%	51%	54%	49%	45%
2017-02-09 Thu	Weekday	34%	M	M	May					45%	48%	47%	49%	50%	54%	47%	48%
2017-02-10 Fri	Weekday	32%		ſŊ					100 kW	39%	40%	41%	48%	53%	53%	47%	43%
2017-02-11 Sat	Weekend	40%								54%	53%	86%	71%	75%	94%	65%	65%
2017-02-12 Sun	Weekend	72%		h / h						69%	67%	90%	80%	88%	90%	76%	72%
		1000	~W	And		N V		man	1,								
2017-01-21 Sat	Weekend	66%	[4] 42017 6 (Mon)	7 (Tue)	8 (Wed)	9 (Thu) 10	(Fri) 11 (Sa	t) 12 (Sun)	0 kW 13 (Mon)	<u> </u>	54%	86%	70%	81%	89%	74%	69%
2017-01-22 Sun	Weekend	70%	55%	66%	55%	66%	72%	55%	60%	12%	60%	79%	81%	81%	85%	67%	74%
2017-01-23 Mon	Weekday	51%	49%							160 KW 990	60%	52%	55%	53%	55%	52%	55%
2017-01-24 Tue	Weekday	52%	47%				4 4 4			140 kW 89	67%	52%	55%	54%	56%	49%	50%
2017-01-25 Wed	Weekday	49%	48%	M	VILA					120 KW 110 KW 9%	67%	52%	52%	55%	58%	52%	57%
2017-01-26 Thu	Weekday	53%	48%	- M	MN					100 kW 90 kW 39	65%	51%	56%	57%	58%	52%	55%
2017-01-27 Fri	Weekday	52%	49%	MMM	VV-	N N Y M L		MANY	' '	70 KW 6%	60%	52%	53%	55%	55%	54%	49%
2017-01-28 Sat	Weekend	58%	49%	U V	Y		WV · W			50 KW 40 KW	53%	84%	61%	70%	82%	63%	74%
2017-01-29 Sun	Weekend	50%	59%			•				^{30 kw} 20 kw 0%	39%	87%	73%	77%	87%	54%	69%
				442017						10 kW 0 kW						11.0	

Type and Floor Area Normalization

- High baseloads
- Electric heat
- Poor load factors

Mon 2017-04-03	$\wedge \nabla$	2,704,339		62,647		5,258		922		Sele	cted	
Double-click for calendar. Use arrows to jump a day.	o	2,704,339	100%	62,647	100%	5,258	100%	922	100%	Total		
Row 424				kWh f	or day	Peak	Load	12:00 to	1:00am		Load Factor	12:00/Peak
Ŧ	Type 🧮	- Square Feet =	Ŧ	Ŧ	Wh/SqFt =	kW =	W/SqFt =	kW =	W/SqFt =			
Blue Heron Elementary	E	55,083		1,521	27.61	133 kW	2.41	17 kW	0.305		48%	13%
Bradford Intermediate	E	46,070		1,145	24.86	108 kW	2.34	17 kW	0.374		44%	16%
Carmody Middle	М	101,254		2,626	25.94	230 kW	2.28	38 kW	0.378		48%	17%
Chatfield High	Н	274,587		7,548	27.49	618 kW	2.25	79 kW	0.288		51%	13%
Creighton Middle	М	120,847		1,114	9.22	102 kW	0.84	9 kW	0.072		45%	9%
Little Elementary	E	42,229		918	21.73	81 kW	1.93	11 kW	0.263		47%	14%
Ralston Valley High	Н	237,815		6,067	25.51	495 kW	2.08	94 kW	0.395		51%	19%
West Jefferson Elementary	E	47,700		1,226	25.71	122 kW	2.55	22 kW	0.455		42%	18%
West Jefferson Middle	М	103,605		1,585	15.30	14 <mark>6 kW</mark>	1.41	25 kW	0.241		45%	17%
West Woods Elementary	E	58,181		1,720	29.56	145 kW	2.49	26 kW	0.443		49%	18%
Westridge Elementary	E	52,665		475	9.02	39 kW	0.74	8 kW	0.155		51%	21%
Wheat Ridge High	Н	207,655		4,461	21.48	379 kW	1.83	51 kW	0.245		49%	13%
Bear Creek HS	Н	255,986		6,217	24.29	477 kW	1.86	134 kW	0.522		54%	28%
Bell Middle	М	128,332		3,239	25.24	280 kW	2.18	66 kW	0.512		48%	23%
Campbell Elementary	E	44,245		1,178	26.62	105 kW	2.38	19 kW	0.419		47%	18%
Deer Creek Middle	М	120,491		2,397	19.90	218 kW	1.81	21 kW	0.173		46%	10%
Eiber Elementary	E	58,066		1,127	19.41	100 kW	1.72	22 kW	0.377		47%	22%
Falcon Bluffs Middle	М	113,580		2,722	23.97	217 kW	1.91	46 kW	0.406		52%	21%
Foster Elementary	E	48,534		953	19.63	86 kW	1.78	13 kW	0.273		46%	15
Lakewood HS	Н	247,535		6,914	27.93	538 kW	2.17	119 kW	0.482		54%	22
Patterson Elementary	E	49,847		936	18.78	84 kW	1.68	12 kW	0.240		47%	14
Pomona High School	Н	205,816		4,656	22.62	389 kW	1.89	53 kW	0.259		50%	14
Secrest Elementary	E	46,373		1,002	21.60	87 kW	1.87	12 kW	0.249		48%	13
Vivian Elementary	E	37,843		902	23.83	80 kW	2.10	9 kW	0.236		47%	11

Trended Comparisons

- Comparison of trended weather normalizations
 - Override

Black Rock | Burlington

Dashbo \Xi 🛛 Dashbo \Xi

-17%

2%

12%

24%

30%

104%

75%

21%

5%

Elementary

eGauge

Adjustable color code

-15%

-10%

2017-03-31 Fri Weekend 2017-04-01 Sat Weekend

2017-04-02 Sun Weekend

2017-04-03 Mon Weekday

2017-04-04 Tue Weekday

2017-04-05 Wed Late start

2017-04-06 Thu Weekday

2017-04-07 Fri Weekday

2017-04-08 Sat Weekend

2017-04-09 Sun Weekend

2017-04-10 Mon Weekday

2017-04-11 Tue Weekday

2017-04-12 Wed Weekday

-5% =

10%

5%

Ŧ

Infrastructure change

Centr

Elem

eGau

Dash

- Special events

lementary

-8%

-1%

-10%

-1%

-11%

-17%

-11%

-15%

-9%

-9%

-10%

-18%

-17%

-5%

-4%

-2%

1%

-14%

-9%

-4%

6%

eGauge

	re ch nts	ang	е	Energ Energ Net	ary for time-period s y Used 27.2 M y Generated 0.00 W 27.2 M	shown in graph Wh (appro 'h (appro	nentary 712.05am - 4/12/2017 11 xx. \$3,539.79 used) xx. \$0.00 saved) xx. \$3,539.79 spent) 12h 6h 3h 1h	42pm Summary Energy Use	nerated 0.00 Wh 38.9 MWh b	(approx. \$5 (approx. \$0	and the second
itral mentary	Columbine Elementary	Eagle Crest Elementary	Hygiene Elementary	Longn Estate Eleme Schoo	24 (Fri) 26 (Sun)	28 (Tue) 30 (T	Apr 2017 hu) 1 (Set)	3 (Mon) 5 (Wed)	7 (Fr)) (Sun) 11 (Tue)	40 kW 40 kW 20 kW 10 kW
uge	<u>eGauge</u>	<u>eGauge</u>	<u>eGauge</u>	eGauge	<u>eGauge</u>	eGauge	eGauge	eGauge	<u>eGauge</u>	<u>eGauge</u>	eGauge
hbo \Xi	Dashbo \Xi	Dashbo \Xi	Dashbo 室	Dashbo 호	Dashbo \Xi	Dashbo \Xi	Dashbo 포	Dashbo 😨	Dashbo \Xi	Dashbo \Xi	Dashbo 💼
10%	1%	2%	-6%	3%	4%	-9%	-1%	-12%	12%	-11%	-3%
12%	-7%	4%	-12%	43%	89%	15%	-3%	-8%	4%	-12%	-8%
-23%	-7%	-2%	-16%	3%	6%	-8%	6%	-5%	-5%	-11%	-4%
-15%	-3%	-1%	-13%	12%	11%	-5%	0%	-2%	3%	-3%	-3%
-17%	-8%	-7%	-22%	-1%	4%	0%	2%	-1%	1%	-5%	-6%
-14%	-1%	3%	-13%	-6%	12%	-1%	4%	-1%	-1%		
-4%	-23%	-5%	-24%	-12%		6%	-14%	63%	-19%		
20%	-10%	-10%	-9%	-5%	4%	1%	-3%	9%	-14%		
-16%	-6%	-4%	-17%	-10%	9%	-4%	-4%	-6%	-5%		urces

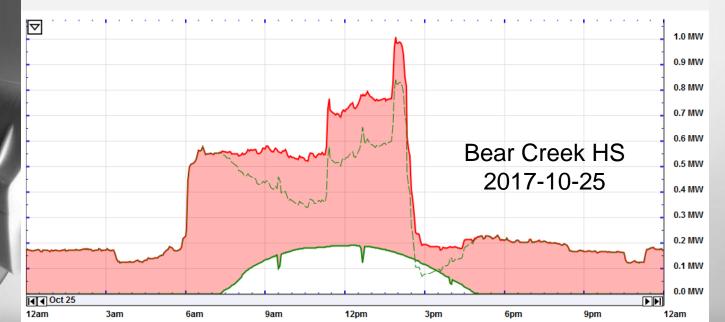
0%

1%

6%

7%

-5%

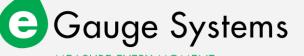

5%

-3%

-5%

Demand Response, Solar, Storage

- Rate models, interval data, and design
- Production monitoring, fault detection
- Programming to reduce demand
- Demand response
- Solar effects on demand
- Ice storage, Battery storage



Visualization vs. Analysis and Action

- Does monitoring map to accounts, control points
- Do visualizations answer questions?
- Do you need to download data seek answers?
- Can you isolate, compare, quantify, adjust?:
 - Programming changes
 - Schedule changes
 - Behavior
 - Energy
 - Demand
 - Costs
 - Baselines vs. Current Use and exclusions
- Support for implementation and unexpected

References

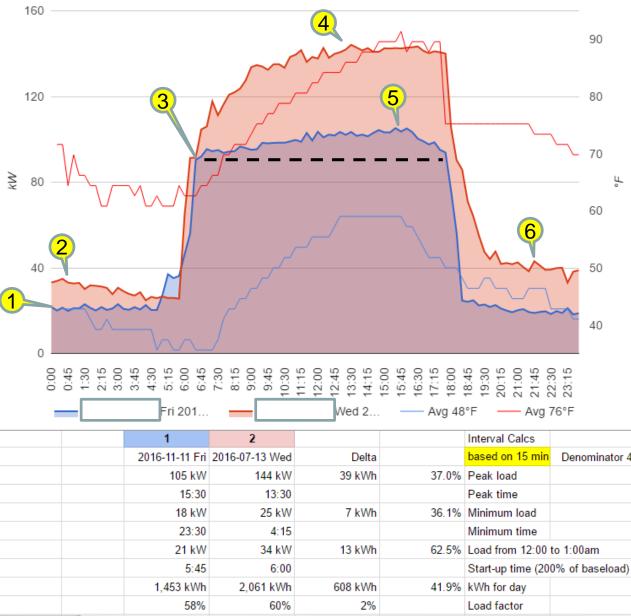
Local companies with deep technical knowledge:

eGauge: https://www.egauge.net/

Magnelab: http://www.magnelab.com/

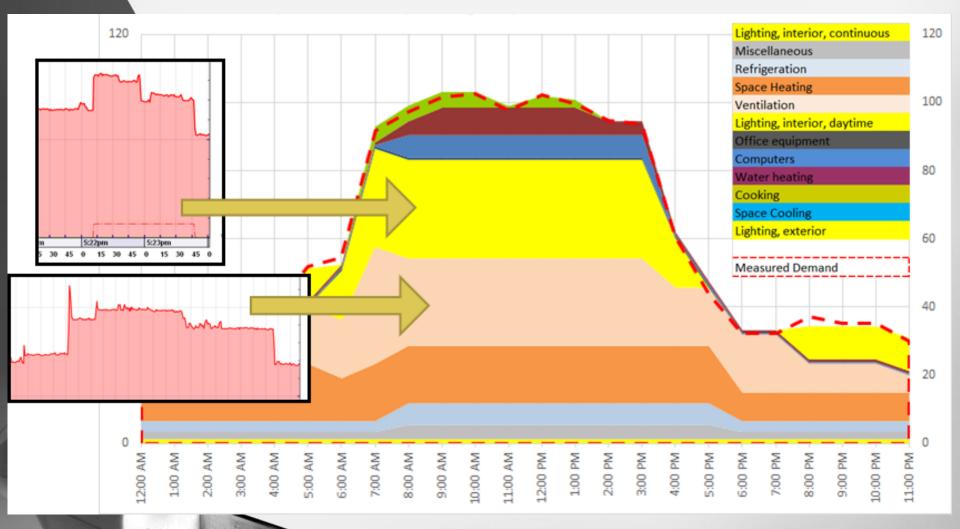
ReNew Our Schools is still going strong and the Center for ReSource Conservation has been renamed **ReSource Central**

https://resourcecentral.org/renew-our-schools/how-it-works/

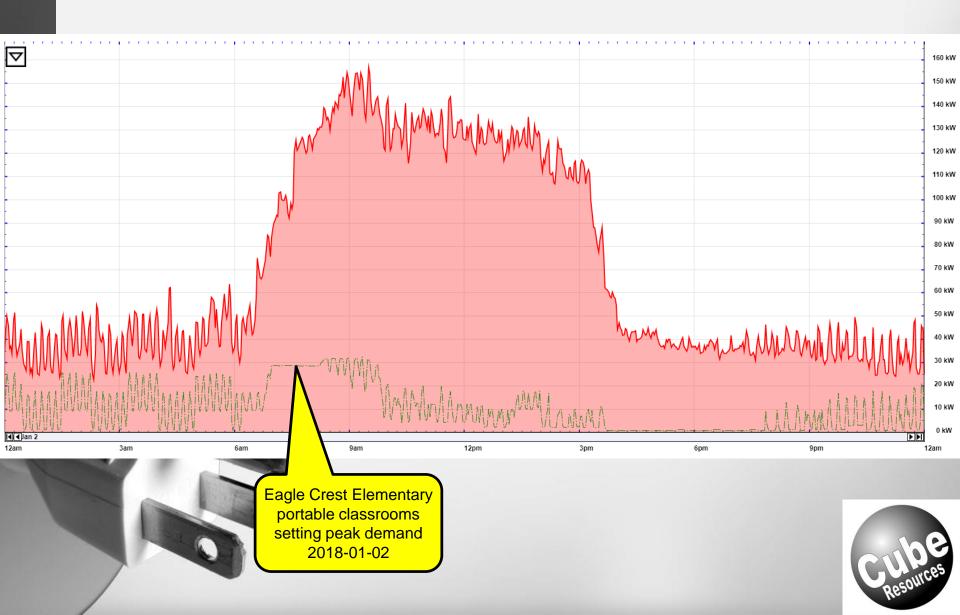


References

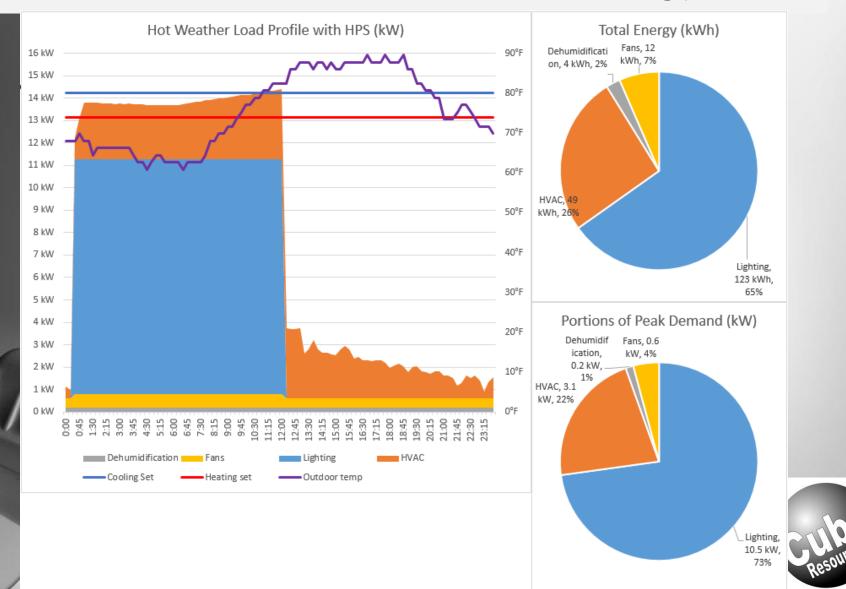
- Laurence Berkley National Labs (LBNL)
 - EMIS: Crash Course to Successful Use, Xcel Energy Efficiency Expo, January 28, 2016 https://www.xcelenergy.com/staticfiles/xe-responsive/assets/images/Content/MN-Xcel-Expo-2016-Xcel-EMIS-Crash-Course.pdf
 - A Primer on Organizational Use of Energy Management and Information Systems (EMIS) <u>https://betterbuildingssolutioncenter.energy.gov/sites/default/files/attachments/A_Primer_on_Organizational_Use_of_EMIS_V1.1.pdf</u>
 - Smart Energy Analytics Campaign | Better Buildings Initiative https://betterbuildingssolutioncenter.energy.gov/alliance/smart-energy-analytics-campaign
 - Better Buildings Alliance: Activities | Better Buildings Initiative <u>https://betterbuildingssolutioncenter.energy.gov/alliance/activities/technology-solutions-teams/energy-management-information-systems</u>
- NREL
- Jess Lorentz Dashboard presentation to RMAEE
 http://upkeepenergy.com/energy-dashboards-features-and-benefits/
- Magnelab white papers
 - Dara Ward Real-Time Electricity Savings for Schools Using Magnelab Current Transformers Magnelab <u>http://www.magnelab.com/real-time-electricity-savings-schools-using-magnelab-current-transformers/</u>
 - Cube
 - The benefits of high quality electrical usage interval data <u>http://www.magnelab.com/the-benefits-of-high-quality-electrical-usage-interval-data/</u>
 - Peer use cases
 - Lucid: BVSD (electricity), APS (electricity & natural gas)
 - Power TakeOff: Douglas
 - McKinstry PowerED: Pueblo, City of Boulder
 - Community Power Partnership: City of Boulder <u>https://bouldercolorado.gov/sustainability/community-power</u>
 - Smart meters: Poudre
- CASDEM BuildingIQ 2017-03-02
- CASDEM Power TakeOff 2015-09-03
- CASDEM Lucid 2015-03-05

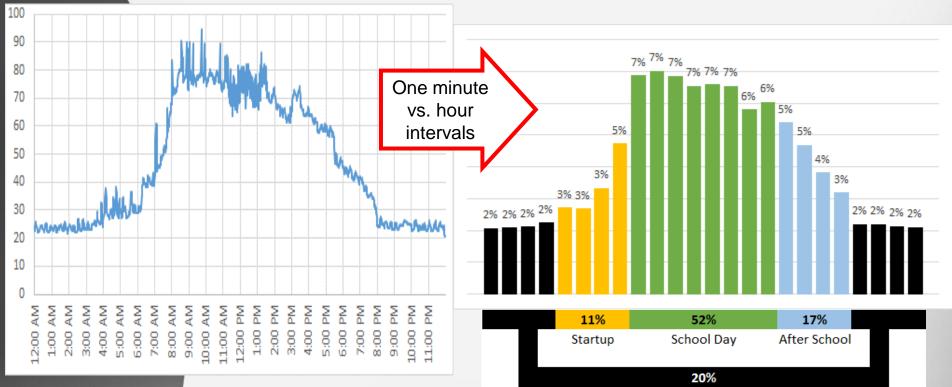

Disaggregation Via Season

- 20 kW overnight load is mainly vegetative lighting
- 2. High overnight temperatures keep AC running
- 3. 90 kW 20 kW = 70 kW of bloom light load
- 4. AC load increases over warm day
- 5. AC load is still present on cool days
- 6. AC persists into warm evenings after lighting load is gone



Disaggregation by System Cycling



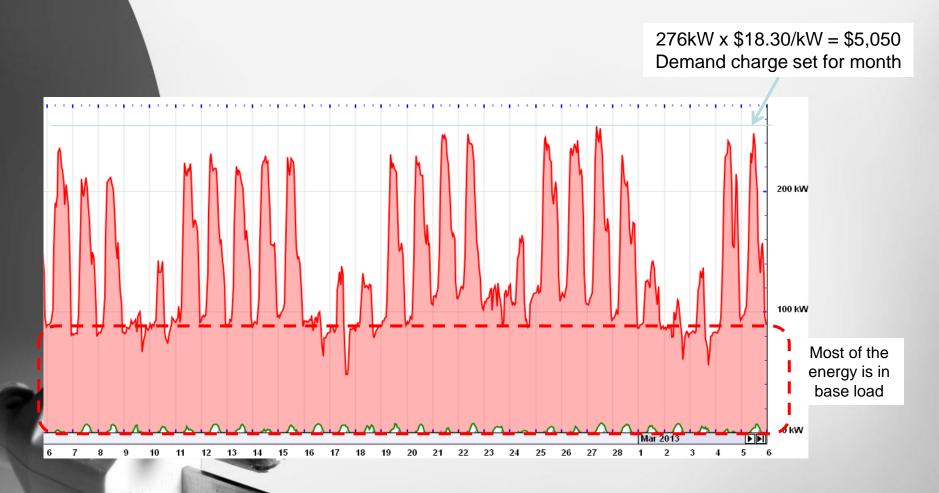

Disaggregation by Circuit Monitoring

Disaggregation by Circuit Monitoring, Power (Demand) vs. Energy

Disaggregation by Time of Day

Energy Cost:

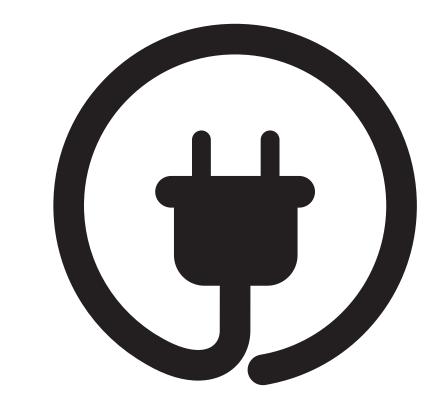
- <u>11%</u> is used during startup
- <mark>52%</mark> is used over the school day
- 17% is used after school (23% if that period is started right after the bell) 20% is used overnight (not the same thing as "base load")


Base Load / Night

Demand Cost:

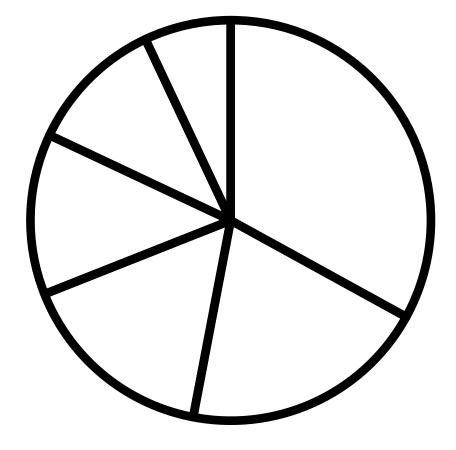
Set during school day, but baseload contributes

Base Load vs. Daily Load Cycle

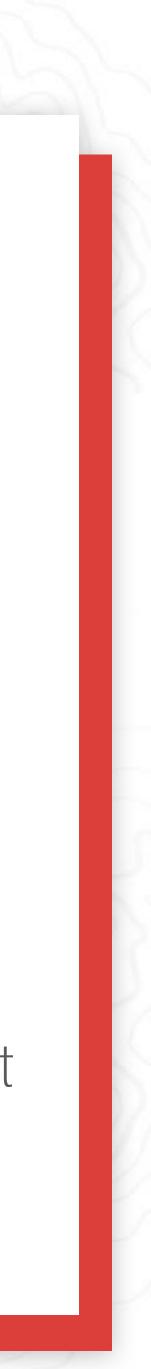

Plug Load Management

CASDEM – January Meeting

Thursday, January 11, 2018

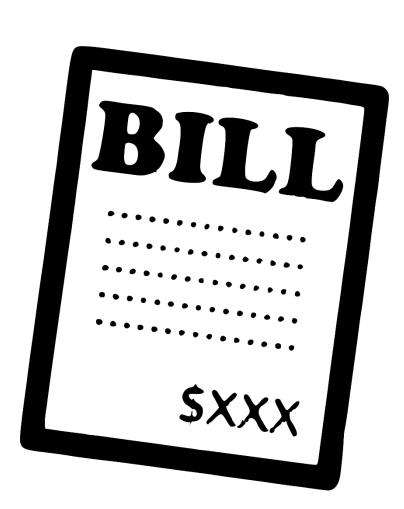

SUSTAIN

Increasing Number of Devices in Facilities


Why Do It?

Significant Portion of Your Energy Bill

Increasing Cost of Energy



Decision Guide

Education Solutions		Strategy Co	Project Types						
Strategy	Total Cost	Total Cost Potential Savings Implementation Complexity User Acceptance of Change		Do it Now	Staged Retrofit	Whole-Building Retrofit	New Construction	Landlord Tenant Solutions	
Turn it Off Campaigns	\$	\$\$	0	L	~	~	~	~	~
Advanced Power Strips (APSs)*	\$	\$\$	0			~	~	~	~
Upgrade Equipment with Low-Energy or ENERGY STAR Certified Equipment**	\$\$	\$\$	0	1 11		~	~	~	~
Use Built-In Low Power States	\$	*	0	111	~	~	~	~	~
Design Strategies for Consolidating Plug and Process Loads (PPLs)***	\$\$	\$\$	Ø	C		~	~	~	~
Integrate PPL Controls with Other Building Systems	\$\$\$	555	Ø	1 333			~	~	
Additional Submetering and Control Options****	\$\$	\$\$	0	L		~	~	~	

Use Existing Utility Sub-metering Data

Methods & Considerations

IoT Solutions

Controlling plug load usage through automation is the best solution to actually targeting vampire pull in your facility but can lead to push back from your end users.

People Problems

Using data to engage end users seems to be the best way to gain end user buy in and adoption. We suggest a combination of the two in order to effectively reduce plug load in your facilities.

Plug Load Data

Setting a baseline of your plug load usage before implementing a project can allow you to qualify for a custom rebate through your energy provider.

Per Plug or Per Location Energy Consumption

You must be monitoring your per plug or per location plug load usage and storing that data. Typically for one month.

Automated scheduling that turns devices off when a building is unoccupied. And data supporting the amount of kWh saved while off.

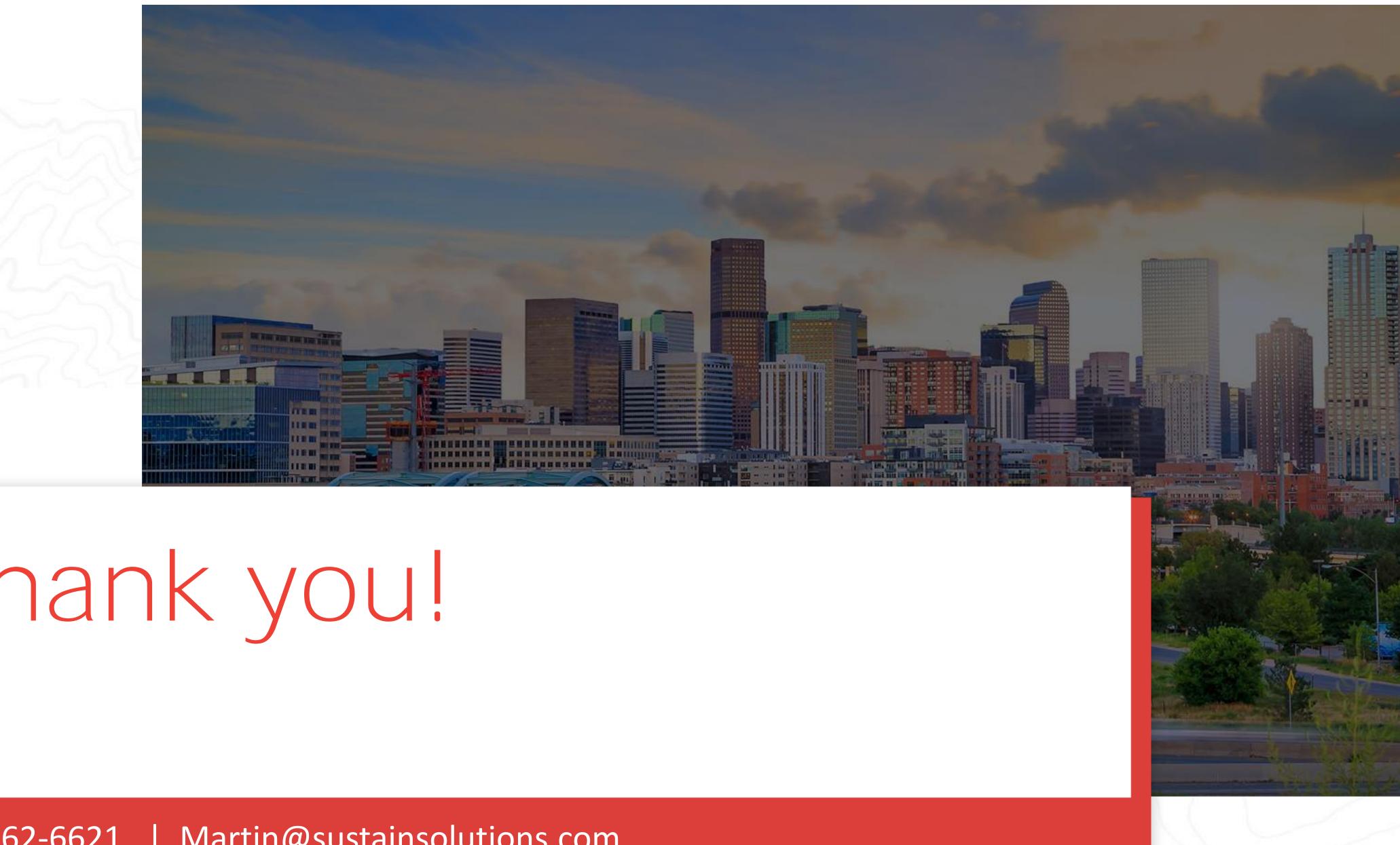
Scheduling Around Operating Hours

Reporting Savings to Energy Provider

Every energy provider has different requirements to qualify for a custom rebate so you must do your research beforehand.

Final Recommendations

 \bullet


- devices.
- Run an ongoing Turn it Off campaign.
- Set a baseline and benchmark your progress.
- tracking.

Identify, target, and consolidate your highest plug load consuming

Use smart devices like Advanced Power Strips and Smart Plugs to better monitor and control device usage around operating hours.

Integrate any data and above monitoring devices into your BAS for better

Build your case and submit your information to your utility provider to secure custom energy saving rebates and offset your costs.

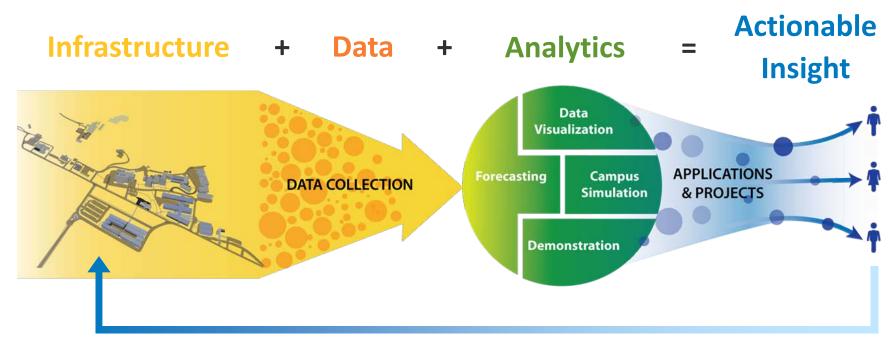
Thank you!

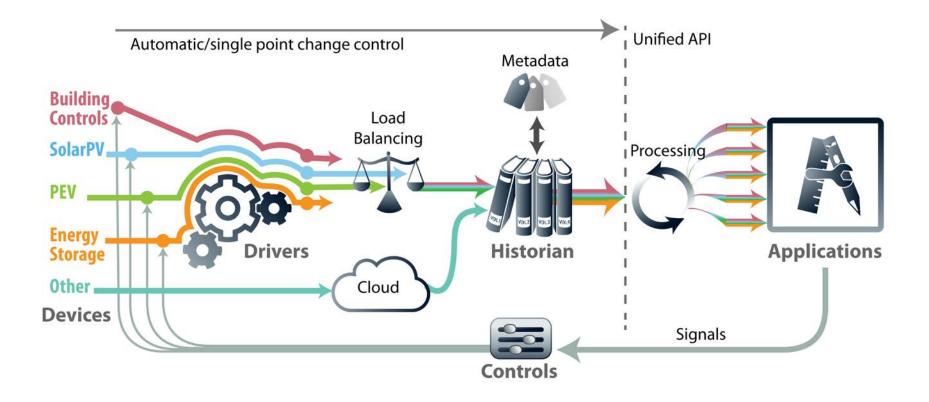
719-362-6621 | Martin@sustainsolutions.com

EMIS At NREL

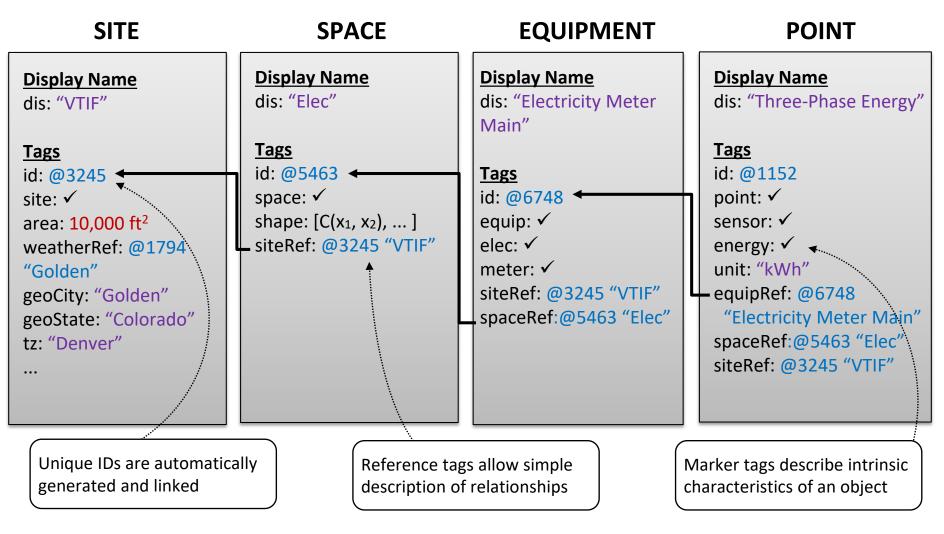
Dylan Cutler and Stephen Frank Presentation to CASDEM January 11, 2018

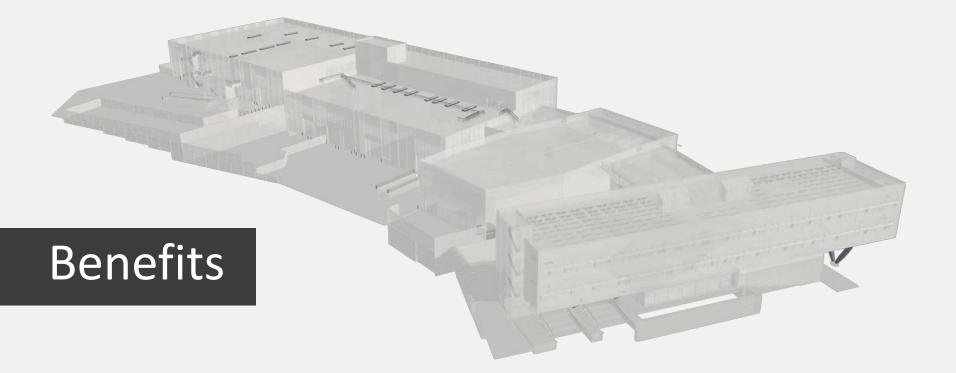
NREL employee population has increased 88% since 2003 In 2016 NREL had 2,159 employees


Campus building footprint has expanded from 436,941 ft² in 2003 to 1,136,335 ft² in 2016—a 160% increase


Energy Management and Information System

Energy Management, Insight, and Savings




Improved Operations

Semantic Metadata → Informational Interoperability



Fault Detection and Diagnosis

Group	Rules	dur	Timelines	i.				
S&TF AHU-1 16 sparks	AHU DAT Control	3.84hr						
	AHU Not Fully Economizing	13.56hr						
	AHU Space Pressure Control	165.09hr						
	AHU Underfloor Pressure Control	40.46hr						
			Sun 16th	Mon 17th	Tue 18th	Wed 19th	Thu 20th	Fri 21st
S&TF MAU-1 13 sparks	MAU DAT Control	39.6hr						
	MAU Evap Heat Cycling	1.57hr						
	PID Cmd Loop is Hunting	2hr			N			
	Short Cycling	5.38min						
			Sun 16th	Mon 17th	Tue 18th	Wed 19th	Thu 20th	Fri 21st
8 sparks	O Zone Temp SP Not Met	53.98hr						
	Zone Temp out of Comfort Range	26.86hr						
			Sun 16th	Mon 17th	Tue 18th	Wed 19th	Thu 20th	Fri 21st

Insight into Lab Operations

Make a Plan

Involve Everyone Early

Go **Slowly** Allow Time to **Learn**

You Need **Users** To Achieve Results

Thank You!

www.nrel.gov

EIS PROGRAM

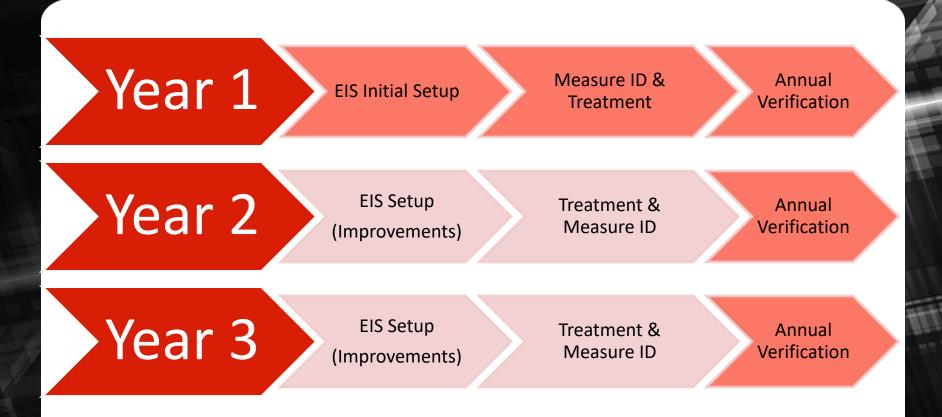
MIKE STANEK, MICHAELS ENERGY

EIS PROGRAM OVERVIEW

- Detailed Energy Tracking
- Analysis of Energy Usage
- Implementation Assistance
- Verification of Savings

Xcel Energy Support Energy

Information


System

- Rebate for EIS Installation Costs
- Trusted Energy Services Provider
- Pre-approved EIS providers
- Incentives for Energy Savings

Strategic Energy Management

- Energy & Project Goals
- Energy Training and Prioritization
- Persistence of Savings

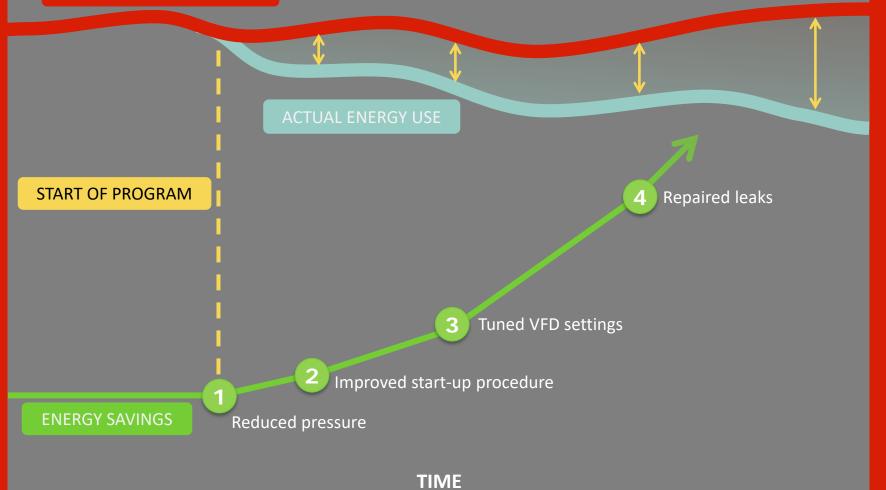
PROGRAM OVERVIEW

EIS SETUP

EIS Scoping

- 1-2 Day Site Visit
- Identify:
 - Short term needs
 - Long term goals
 - Existing metering
 - Metering needs
 - Data collection needs
 - RFP assistance

Meter Plan


• Document outlining:

- Metering/hardware needs
- Key software needs
- Xcel Energy minimum reporting needs

Energy Model

- Baseline Energy Model for use in:
 - Identifying opportunities
 - Tracking energy performance

EXPECTED ENERGY USE

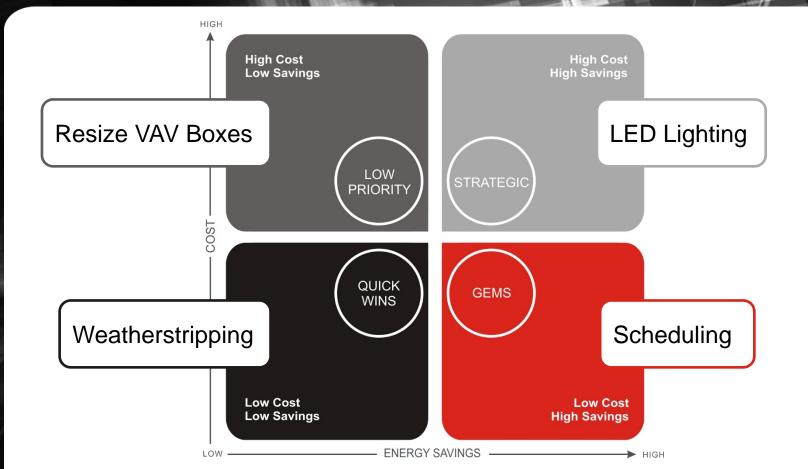
EIS Installation Incentive

• Up to **30%** of installation cost*

*Eligible costs include those related to Xcel Energy minimum requirements outlined in meter plan *Incentive cap of \$0.0034/kWh

• After EIS is installed and verified

TREATMENT


Energy Scan

- 1-3 Day Site Visit to Identify:
 - Low-/no-cost energy efficiency opportunities
 - Capital measures
 - Energy management best practices

Implementation Support

- Regular Scheduled Meetings:
 - Assist w/ implementation of identified measures
 - Support in roll out of energy management best practices

TREATMENT

8

ANNUAL VERIFICATION

Annual Verification

- Report outlining:
 - Energy efficiency opportunities implemented.
 - Implementation costs including:
 - In-house labor
 - Equipment/materials
 - Annual EIS maintenance costs
 - Energy savings achieved

EIS Implementation Incentive

- Up to \$400/kW or \$4/Dth saved *Subject to Xcel Energy cost effectiveness requirements
- Behavioral Measures get \$0.02/kWh after completion of each year *Incremental/new savings added in subsequent years

XCEL ENERGY EIS REQUIREMENTS

Customer Requirements

- Minimum Consumption
 - 4,000,000 Annual kWh Total
- Commitment to Energy Savings

EIS Requirements

- Energy Modeling Capability
 - Built-in
 - Calculated meters
- Tracking Energy Savings
- Data Security
- 15 Minute Interval Data Resolution

PRE-QUALIFIED EIS TOOLS

Power TakeOff

SeoSuite

INTERESTED?

- Contact your Xcel Energy Account Manager
- Let them know you are interested in the new:

Energy Information Systems (EIS) Program

QUESTIONS

A CUSTOMER SUCCESS STORY

 PURG

MDF MANUFACTURER

- Leading Manufacturer of Medium Density Fiberboard (MDF)
- Long history of capital energy-saving projects
- Skeptical about finding much energy waste in the operations and maintenance of plant equipment

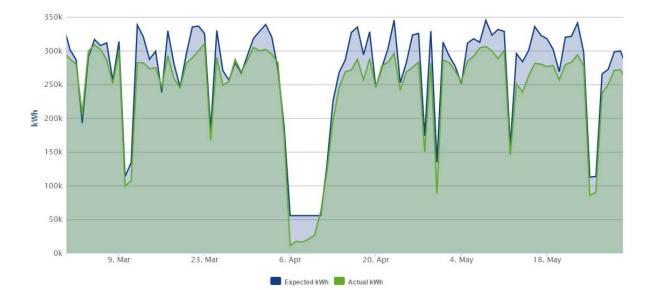
TWO-PART APPROACH

- Installed Energy Information System (EIS)
 - Tracking energy performance
 - KPIs identify periods of best performance
 - Visibility of daily energy trends
- Kicked off Strategic Energy Management (SEM) program
 - Assigned Energy Champion
 - Executive level support
 - Set aside resources

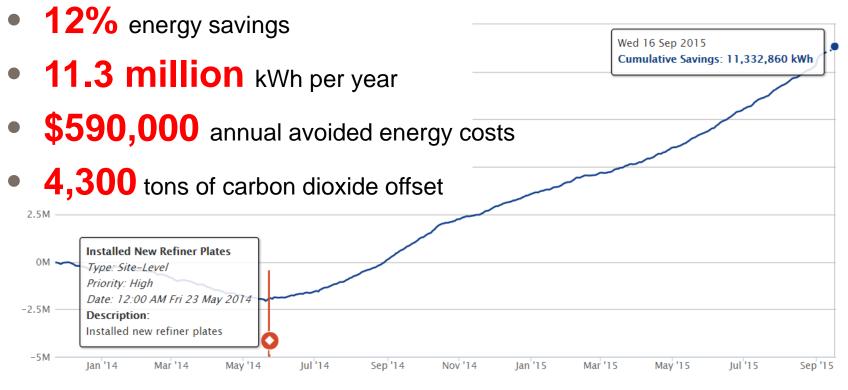
EIS Components				
Electric Data	1 Utility Meter			
Weather Data	Ambient Temp & Relative Humidity			
Production Data	Total Plant Output (board feet) Raw material (tons)			
Efficiency Metrics	Expected Energy Model kWh/Ton KPIs			

"Strategic Energy Management helped us set aside time to give energy efficiency more attention, doing that paid off by reducing our annual energy costs by \$588,700."

ACTIONS TAKEN - MANAGEMENT


- Adopted and communicated a corporate energy policy
- Set a first-year energy-savings goal of 5 percent
- Designated Energy Champion
- Established an energy team
- Engaged employees in energysaving actions and tracked progress

"Energy Is Deserving Of Conserving"

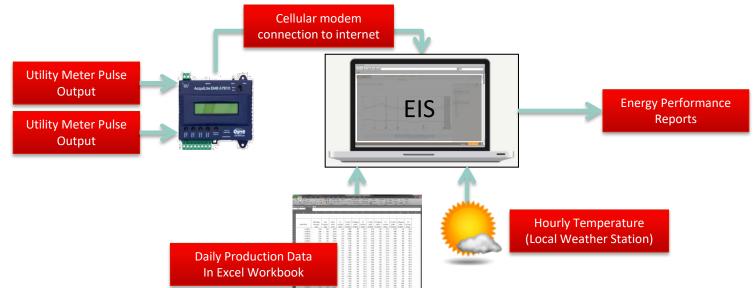


ACTIONS TAKEN - O&M

- Replaced 54-inch refiner plates with 50-inch plates
- Increased water injection rate on refiner plates
- Adjusted equipment schedules to minimize idle operation

RESULTS/SAVINGS

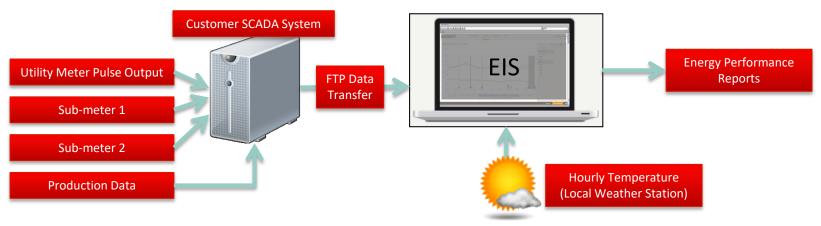
Cumulative Savings



EIS Examples

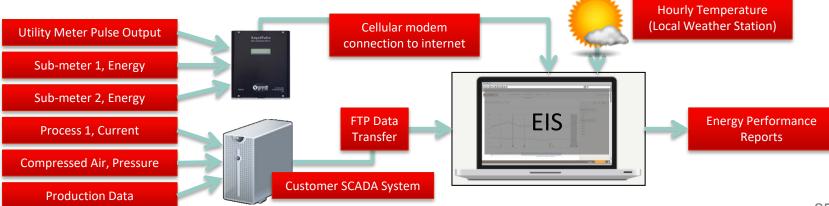
EIS EXAMPLE A - SIMPLE

- Pulse output from the utility meter (x2)
- Cellular transmission of pulse data to EIS
- Manual upload of production data


- Automatic upload of weather data
- Real time monitoring of energy savings

EIS EXAMPLE B - MODERATELY COMPLEX

- Pulse output from the utility meter (x2)
- Cellular transmission of pulse data to EIS
- Manual upload of production data


- FTP transfer of data from SCADA to EIS
- Automatic upload of weather data
- Real time monitoring of energy savings

EIS EXAMPLE C - COMPLEX

- Pulse output facility's power meter (x2)
- Energy use from sub-meters and key process variables
- Cellular transmission of pulse and sub-meter data
- Upgrade SCADA system to trend new points

- FTP data transfer from SCADA to EIS
- Automatic upload of weather data
- Real time monitoring of energy savings

EIS EXAMPLES

	Example A	Example B	Example C	
Setup (\$)	\$10,000	\$17,000	\$27,500	
Maintenance Expense (\$/yr)	\$2,550	\$3,300	\$3,900	
*Estimated 6-year Expense	\$25,300	\$36,800	\$50,900	
Estimated Energy Savings Potential (kWh/yr)	770,000	525,000	1,300,000	
EIS Cost (\$/kWh)	\$0.03	\$0.07	\$0.04	
Energy Metering Points	2	2	3	
Analog Metering Points	0	3	8	
Auto Production Import	No	Yes	Yes	
Auto-Weather Import	Yes	Yes	Yes	
Method of File Transfer	Cellular	FTP	FTP/Cellular	
Predictive Energy Model (IPMVP Option C)	Yes	Yes	Yes	
Integrated Action Item Tracking	Yes	Yes	Yes	
Complexity Rating	Simple	Moderate	Complex	

*Typically an additional 1 year of maintenance expense is incurred in the baseline or set-up period